第六百八十章:通向准黎曼猜想的道路(3 / 4)

加入书签

最初的15亿个这样的点,全都符合黎曼猜想的排列规律。

    也没人能找到一个不在线上的点。

    所以通常情况下,黎曼猜想在数学界中被看做是定理,有很多的数学公式都是依托于它成立的基础而建立的。

    漫长的时间在不知不觉中一点一点的流逝过去,小隔间中的灯光明亮,徐川也不知道现在到了几点。

    【re(s)≤0时,z(s)=2π^8-1·sinπ8/2Г(1-s)z(1-s)】

    手中捏着手中的圆珠笔快速的在稿纸上写下一个数学公式后,他陷入了沉思中。

    半响后,他挠了挠头有些‘烦恼’和‘幸福’的暂停下了手中的笔。

    在经过学姐刘嘉欣的提醒后,他找到了自己之前研究的问题在哪,也隐隐约约的找到了之前研究爱因斯坦罗森桥的一点方向。

    但阴差阳错的,他准备研究的方向没有找到什么思路,反而在黎曼猜想上有了一点灵感。

    看着铺开在办公桌上的稿纸的,徐川抿了抿嘴,这是通过泊松求和公式对z(s)函数和z(1-s)函数的推导,是对re(s)≤0时无非平凡零的求证核心步骤之一。

    通俗点来说,就是对黎曼猜想做弱化,然后再去解决弱化后的黎曼猜想,即弱·黎曼猜想。

    这其实也是近代数学界一直都在做的事情。

    研究临界线上零点比例的下界数量,是黎曼猜想临界带思路出现以来,数学界公认的最好的方法。

    黎曼猜想的z函数中,所有非平凡零点都位于re(s)临界点上,也非平凡零点的实数根都是1/2。

    这是猜想,还没证明。

    但目前来说,数学界已经做到了将黎曼猜想的z函数的非平凡零点都归纳到0-1这条贴近于0.5的临界带上。

    简单的来说,就是我目前还做不到证明它的实数根都是1/2,那我就证明它都位于0-1之间好了。

    这样说虽然不太标准,但至少比较容易理解。

    临界带思路下界就是这样的一条思路。

    通过不断的推进0-0.5的距离,使非平凡零点都逐级的贴近1/2。

    而在这条路上,数学界涌现出了一大批的成果。

    如1975年麻省理工学院的莱文森在他患癌症去世前证明了no(t)>0.3474n(t)。1980年的时候,华国数学家楼世拓、姚琦对莱文森的工作有一点改进,他们证明了no(t)>0.35n(t)。

    目前关于黎曼猜想研究的最好结果,就是通过不断的逼近临界带这一方法证明出来的。

    但遗憾的是,在黎

↑返回顶部↑

书页/目录